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The mammalian cell nucleus
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Chromatin states and nuclear subcompartments
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Gravity is not relevant for proteins in the cell...

... and everything should mix fast by diffusion



Self-assembly versus self-organization
(as defined by Tom Misteli)

<\

S Self-organization

Self-assembly
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Figure 1.  Self-assembly versus self-organization. In self-assembly,
a set of components assembles into a stable, static structure that

reaches a thermodynamic equilibrium. In self-organization, a set of
components assembles into a steady-state, dynamic structure.



Subcompartment formation in the cell
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The promyelocytic leukemia (PML) nuclear body

CHROMATIN METABOLISM

TUMOR ANTIVIRAL
SUPPRESSION DEFENSE
SENESCENCE/ TRANSCRIPTION

APOPTOSIS REGULATION
DNA REPAIR

Hela cell

blue: DAPI; green: anti PML immunostaining

Gorisch, Wachsmuth, Ittrich, Bacher, Rippe & Lichter (2004). Nuclear body movement is determined by chromatin
accessibility and dynamics. Proc Natl Acad Sci USA 101, 13221-13226 (2004).



Structure of the PML protein




PML protein is present in 7 splicing variants
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PML nuclear bodies and their complexes with telomeres

confocal STED image telomere
microscope complexes
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PML and Sp100 proteins form distinct patches in the
spherical shell of the PML nuclear body

PML Sp100




Localization of SUMO modification in PML-NBs
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Model for the dynamic structure of a PML nuclear body
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Movements of PML bodies (green) in the nucleus




Single Particle tracking (SPT):
nuclear bodies, chromatin loci, proteins, RNA

» Easiest approach to measure mobility:
Directly watch single particles (over time)

* Prerequisites:
Low concentration, bright & slow particles

trajectory
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Due to obstructions and or binding the mean square
displacement is no longer proportional to time
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Movement of a PML body in the nucleus



Protein mobility and interactions in the cell
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Dependence of diffusion coefficient D and molecular mass M

1 1
protein: Doc M 3 DNA: Do M >
double mass M => 0.8 fold lower D double mass M => 0.7 fold lower D

Wachsmuth, M., Caudron-Herger, M. and Rippe, K. (2008). Biochim. Biophys. Acta 1783, 2061-2079.



Self-organization in the nucleus

macromolecular
crowding due to
volume exclusion
by chromatin and
other macromolecules

interaction of  depletion attraction as fast exchange between
hyrdophobic ~ complex has reduced  complex assembly  free and complexed state
protein surfaces  excluded volume for favored by the

the small particles nucleus envrionment



Liquid-liquid phase separation (LLPS) in the cell

>

LLPS for chromatin

Nucleolus
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Feric 2016 Cell
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Does chromatin look like a lava lamp?
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and what would this mean in terms of function?



Phase diagram representation
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RNA can act as a glue to drive phase separation

Complex assembly Complex dissociation
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Mechanisms for the formation of chromatin subcompartments
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Features of a versus polymer-polymer
phase separation mechanisms

* Homogeneous “liquid” phase * Colocalization with chromatin
* Fast internal mixing * Accessible to soluble factors
* Exclusion (chemical properties) * Size dependent exclusion
* Different viscosity * Soluble fraction like nucleoplasm
* Coalescence/fusion * Coalescence/fusion
o
Concentration ﬁ = .
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Formation of heterochromatin domains by a
liquid-liquid like phase separation mechanism?

Heterochromatin
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Mouse pericentric heterochromatin - a model system
for a large silenced chromatin domain

Pericentric heterochromatin (“chromocenters”)
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HP1a with DNA makes liquid droplets in vitro
(HP1p3 and HP1y have a lower droplet formation propensity)

GFP-HP1a

(without DNA)
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HP1 displays a granular structure and is not required
for chromocenter condensation

HP1a immunostaining Confocal zoom STED zoom
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The nucleolus continuously (dis)assembles during the cell cycle
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Coexisting liquid phases underlie nucleolar subcompartments

X. laevis, untreated

FC: POLR1E

(A) Schematic diagram of ribosome biogenesis in
nucleolus.

(B) Nucleoli in an untreated X. laevis nucleus. Scale
bar, 20 um. For all images, granular component (GC)
is visualized with NPM1 (nucleophosmin, red), dense
fibrillar component (DFC) with FIB1 (fibrillarin, green),
and fibrillar center (FC) with POLR1E (blue).
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Purified nucleolar proteins can phase separate into
droplets with different biophysical properties
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(A) Phase diagram of purified FIB1 in the presence of 5 ug/mi of
rRNA. Inset: FIB1 droplets. Scale bar, 10 pm.

(B) Phase diagram of purified NPM1 in the presence of 100 ug/ml of
rRNA. Inset: NPM1 droplets. Scale bar, 10 uym.

Marina Feric et al., Cell 2016



aluURNA-driven phase transition of the nucleolus

before treatment
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Caudron-Herger 2015, EMBO J
Caudron-Herger 2016, Nucleus



aluURNA-driven phase transition of the nucleolus

Coalescence Dispersion

$2 aluRNA
NCL
SN\ rDNA 5 NPM

Caudron-Herger 2015, EMBO J
Caudron-Herger 2016, Nucleus



