Formation of cellular subcompartments

The mammalian cell nucleus

Chromatin states and nuclear subcompartments

Gravity is not relevant for proteins in the cell...

... and everything should mix fast by diffusion

Self-assembly versus self-organization (as defined by Tom Misteli)

Figure 1. Self-assembly versus self-organization. In self-assembly, a set of components assembles into a stable, static structure that reaches a thermodynamic equilibrium. In self-organization, a set of components assembles into a steady-state, dynamic structure.

Subcompartment formation in the cell

The promyelocytic leukemia (PML) nuclear body

blue: DAPI; green: anti PML immunostaining

Görisch, Wachsmuth, Ittrich, Bacher, Rippe & Lichter (2004). Nuclear body movement is determined by chromatin accessibility and dynamics. *Proc Natl Acad Sci USA* **101**, 13221–13226 (2004).

Structure of the PML protein

PML protein is present in 7 splicing variants

PML nuclear bodies and their complexes with telomeres

PML and Sp100 proteins form distinct patches in the spherical shell of the PML nuclear body

Localization of SUMO modification in PML-NBs

merge 1

PML SUMO-2/3

merge 2

Model for the dynamic structure of a PML nuclear body

Movements of PML bodies (green) in the nucleus

Single Particle tracking (SPT): nuclear bodies, chromatin loci, proteins, RNA

- Easiest approach to measure mobility: Directly watch single particles (over time)
- Prerequisites:

Low concentration, bright & slow particles

Due to obstructions and or binding the mean square displacement is no longer proportional to time

Movement of a PML body in the nucleus

Protein mobility and interactions in the cell

 $\mathsf{MSD} = 6 \ D \ t^{\alpha}$

Dependence of diffusion coefficient D and molecular mass *M* protein: $D \propto M^{-\frac{1}{3}}$ DNA: $D \propto M^{-\frac{1}{2}}$ double mass *M* => 0.8 fold lower *D* double mass *M* => 0.7 fold lower *D*

Wachsmuth, M., Caudron-Herger, M. and Rippe, K. (2008). Biochim. Biophys. Acta 1783, 2061-2079.

Self-organization in the nucleus

excluded volume for the small particles

favored by the nucleus envrionment

Liquid-liquid phase separation (LLPS) in the cell

The "oil droplets in water" model

LLPS for chromatin

Nucleolus Brangwynne 2011 *PNAS* Feric 2016 *Cell*

(Peri)centromeres/ heterochromatin

Larson 2017 *Nature* Strom 2017 *Nature* Cerase 2019 *Nat Struct Mol Biol* Wang 2019 *Mol Cell* Trivedi 2019 *Nat Cell Biol* Sanulli 2019, *Nature*

Telomeres Shin 2018 *Cell* Min 2019 *Genes Dev*

"Transcriptional condensates"

Hnisz 2017 *Cell* Sabari 2018 *Science* Boija 2018 *Cell* Boehning 2018 *Nat Struct Mol Biol* Cho 2018 *Science* Lu 2018 *Nature* Chong 2018 *Science* Shrinivas 2019 *Mol Cell*

Chromatin in general Gibson 2019 *Cell*

Does chromatin look like a lava lamp?

and what would this mean in terms of function?

Phase diagram representation

Holehouse 2019 Intrinsically Disordered Proteins

RNA can act as a glue to drive phase separation

Mechanisms for the formation of chromatin subcompartments

Features of a liquid-liquid versus polymer-polymer phase separation mechanisms

- Homogeneous "liquid" phase
- Fast internal mixing
- Exclusion (chemical properties)
- Different viscosity
- Coalescence/fusion

- Colocalization with chromatin
- Accessible to soluble factors
- Size dependent exclusion
- Soluble fraction like nucleoplasm
- Coalescence/fusion

Formation of heterochromatin domains by a liquid-liquid like phase separation mechanism?

Larson, Narlikar 2017 *Nature* (Human HP1) Strom, Karpen 2017 *Nature* (Drosophila HP1)

Mouse pericentric heterochromatin - a model system for a large silenced chromatin domain

Pericentric heterochromatin ("chromocenters")

Mouse chromocenters

- Nucleosomes: 230 µM
- HP1 α/β total: 10 μ M dimer

H3K9me3 modification

Writer SUV39H1/H2

Eraser JMJD2

Readers HP1α/β/γ SUV39H ATRX

HP1 α with DNA makes liquid droplets in vitro (HP1 β and HP1 γ have a lower droplet formation propensity)

HP1 displays a granular structure and is not required for chromocenter condensation

Suv39h1/h2 knock-out leads to H3K9me3 and HP1 loss but not to decondensation

The nucleolus continuously (dis)assembles during the cell cycle

Coexisting liquid phases underlie nucleolar subcompartments

(A) Schematic diagram of ribosome biogenesis in nucleolus.

(B) Nucleoli in an untreated *X. laevis* nucleus. Scale bar, 20 μ m. For all images, granular component (GC) is visualized with NPM1 (nucleophosmin, red), dense fibrillar component (DFC) with FIB1 (fibrillarin, green), and fibrillar center (FC) with POLR1E (blue).

Purified nucleolar proteins can phase separate into droplets with different biophysical properties

(A) Phase diagram of purified FIB1 in the presence of 5 μ g/ml of rRNA. Inset: FIB1 droplets. Scale bar, 10 μ m.

(B) Phase diagram of purified NPM1 in the presence of 100 μ g/ml of rRNA. Inset: NPM1 droplets. Scale bar, 10 μ m.

aluRNA-driven phase transition of the nucleolus

Caudron-Herger 2015, EMBO J Caudron-Herger 2016, Nucleus

aluRNA-driven phase transition of the nucleolus

Caudron-Herger 2015, EMBO J Caudron-Herger 2016, Nucleus